
 

E-PFRP N. 44 

2020 

 

        ISTITUTO DI ECONOMIA E FINANZA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

PUBLIC FINANCE RESEARCH PAPERS 

IS THERE A FAIR PRICE IN ST. PETERSBURG REPEATED GAMES? AN EMPIRICAL 
ANALYSIS  

 

 

RUGGERO PALADINI 

 

Pu
bl

ic
 F

in
an

ce
 R

es
ea

rc
h 

Pa
pe

rs
 



2 

 

E-PFRP N. 44 

2020 

 

 

 

 

 

Ruggero Paladini 

Sapienza Università di Roma e Unitelma Sapienza 

ruggero.paladini@uniroma1.it 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

Please cite as follows: 

Ruggero Paladini (2020), “Is there a fair price in St. Petersburg 
repeated games? An empirical analysis”, Public Finance Research 
Papers, Istituto di Economia e Finanza, DSGE. Sapienza University of 
Rome, n. 44 (http://www.digef.uniroma1.it/pubblicazioni).  

 

 



3 

 

E-PFRP N. 44 

2020 

 

 

 

 

Ruggero Paladini 

 

IS THERE A FAIR PRICE IN ST. PETERSBURG 
REPEATED GAMES? AN EMPIRICAL ANALYSIS 

 

Abstract 
 
Can the Foley value (n+2.53) be considered a fair price? It is possible to give a 
positive answer, even if one has to depart to some extent from the classic St. 
Petersburg game. The only way to put player and dealer in an equal position is to 
compare the median of an MC simulation of N games with the Foley value. The 
difference should be, apart from exceptional cases, of the order of one monetary unit 
or less. Of course this difference has to be multiplied by N in favour of the winning 
side, so that higher N implies greater win and risk. The departure from the original 
game of St. Petersburg therefore takes place in two steps: the first step consists in 
playing not a single game but several ones; the second in repeating the same number 
of games with the MC technique and checking the median value with respect to the 
Foley value. In this way the odds of player and dealer would be balanced; the value of 
the unit stake would depend on their love for risk. 
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Is there a fair price in St. Petersburg repeated 
games? An empirical analysis 

 

 
1. Introduction1 

 
Between the second half of the 16th and the first half of the 17th, Fermat, 
Pascal, Huygens, and several others, laid the foundations of the theory of 
probability; among the many debated topics there is that of a game with 
infinite expected value, but in which no player would bet a sum if not 
rather modest. In the standard version, the infinite expected value derives 
from the fact that, by tossing a coin, the payoff consists of one monetary 
unit if heads come out on the first toss, two units on the second, four on 
the third and so on. The infinite value is the product of a probability that 
halves at each toss and an associated win that doubles simultaneously. 
Therefore the sum of a half times one + a quarter times two + an eighth 
times four +… ... implies an infinite series of half unities2, therefore an 
infinite value. 
The attention of scholars is focused on the paradoxical aspect that no one, 
to whom the game is proposed, is anxious to offer high sums; various 
hypotheses are put forward, in particular the one formulated by Daniel 
Bernoulli (1738)3, according to which it is not the expected value that the 
player looks at, but the expected utility. Assuming a utility function with 
respect to income in logarithmic form4, the infinite series quickly 
converges to a finite value. The hypothesis of decreasing marginal utility 
was taken up by Marshall (1890) and gained importance with the 
emergence of the marginalist approach in economics. When the famous 
book by von Neumann and Morgenstern (1944) came out, Bernoulli was 
rightly considered a precursor of the expected utility function. 
There is an aspect that remains neglected for a long time: if the expected 
value is infinite, it seems obvious that it is not possible to define a fair 

                                                                    
1 A few words of premise; this work derives from a discussion with my son Andrea, 
mathematician, on Rodriguez's paper; Andrea told me: don't look at the mean (like 
Rodriguez), look at the median. At that point I remembered Foley's paper, 
reconsidering the meaning of Monte Carlo simulations, and arrived at the conclusion 
that the law of large numbers works, even if imperfectly, and explains the results, 
paving the way to a different kind of fair price. 
2 In more recent times it is preferred to start with two monetary units at the first toss, 
thus having an infinite series of 1 + 1 + 1 +…. 
3 Since Bernoulli's essay appeared in the Proceedings of the St. Petersburg Academy, 
where the scholar was at that time, the problem took the name of St. Petersburg 
Paradox. 
4 This implies that when the income doubles, the marginal utility (the derivative) 
halves. 



5 

 

E-PFRP N. 44 

2020 

 

price between player and dealer. Until William Feller (1945) proves that 
there is indeed a "fair price", not for a single game, but for a repeated 
number of games (Appendix 1). When the number of games (N = 2n) 
approaches infinity, the probability that the price per game differs from n5 
tends to zero. However, Feller puts the expression fair price in quotes, as it 
warns that, at a given (unit) price of the game, it is possible to incur heavy 
losses. As we will see this is especially true for the dealer6. 
Feller's analysis was followed by a series of theoretical contributions that 
highlighted various aspects of the theme of repeated games. The empirical 
studies appeared later, with the advent of personal computers. We can 
divide the empirical tests into two groups; those analysing the average 
payoffs for groups of games with increasing numbers, and those analysing 
the Monte Carlo (MC) iterations, i.e. the repetition, for a high number of 
times, of a given number of games. The formers are of limited use; one can 
note that the payoffs tend to grow with the number of games, but in a 
rather irregular way. Instead the iterations of MC brought to light more 
interesting aspects; in particular, the fact that the payoff distribution has 
similar characteristics both with iterations of a million times or with much 
less numerous ones. That is, even one hundred MC iterations of a number 
N of games are enough to obtain a structure similar to that of ten 
thousand, one hundred thousand or one million iterations. 
 
2. Simulations 
 
The empirical simulations carried out were conducted to verify the 
distribution to the various launches of twenty7 groups of one hundred 
games, from 16 to 65,536, each repeated fifteen times with the MC 
program. A first program made it possible to study in detail the 
distribution of the games released at the various launches. In the next 
fourteen MC simulations a second program directly provided the one 
hundred payoffs for the twenty groups of games8. 
 Now generally MC simulations are far more numerous repetitions than 
100 games. However, it is interesting to note that the twenty distributions 

                                                                    
5 Feller indicates the fair price as n/2 because he starts with the payoff of a monetary 
unit at the first toss. 
6 In the case of a dealer that plays with a plurality of players, the statement is also 
true in the case of only one game (Samuelson 1977). 
7 Thirteen game groups are 2n ones with n from 4 to 16, and seven are in the form 
(2n+2n+1)/2. In this second case the theoretical distribution to the different throws 
ends with 12,6,3. At the next roll, since we cannot have 1.5 games, the distribution 
closest to the theoretical one is 2 at the nth roll and 1 at the n+1 roll. In this case the 
payoff is n + 2.66. The programs were created with Python by Andrea Paladini. 
8 However, given a payoff, it is always possible to accurately reconstruct the 
distribution of the games released in the individual launches. In some cases, the 
distribution, giving the same payoff, can be more than one, but the most probable is 
the one closest to the theoretical distribution, for the reasons explained in the text. 
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all have a similar distribution pattern, with the payoff concentrated 
between n-1 and n+1 about 33%. A much smaller percentage (9%) has 
payoff values below n-1; therefore, more than half of the payoffs have 
values greater than n+1. This means that about half the time, particularly 
from launches n+1 onwards, there are one or more rolls in which no game 
comes up. Sometimes there is only one roll with zero games, more rarely 
they can be two. 
It is also noted that the distribution structure, in the number of games 
released at the various launches, although it is almost never in total 
agreement with the theoretical distribution, does not differ excessively 
from it either. With the increase in the number of games (i.e. from 24 to 
216) the percentage differences in the first launches are reduced to below 
1%; on subsequent throws the percentage increases slightly, and only in 
the last throws more consistent differences may be noted (but, in some 
cases, it may happen that there is a coincidence with the theoretical 
distribution, see Appendix 2). 
Thus, for example, the reason for starting with a group of 16 games 
derives from the fact that less numerous game sets, such as 4 or 8 games, 
have a distribution that is more irregular than the theoretical one. Even in 
the case of 16 games, 11 times out of 100 the games released on the first 
launch were less than those released on the second. In the case of 32 
games, on the other hand, most of the time the games released in the first 
three launches follow a descending order; only in 3 games, out of the 100 
simulated, those released on the second launch are greater than the first, 
and 5 times those of the third launch greater than the second. 
Furthermore, the sum of the games released in the first three throws, most 
of the time, coincides with the theoretical ones, that is 28 (16 + 8 + 4), or 
they differ by only one unit. The reason is easy to understand: if 18 games 
come out instead of 16 on the first roll, there are 14 games remained on 
the second roll, so there is a high probability that 7 will come out. If on the 
third roll out of the remaining 7 there are 3, overall we have 28 games 
which went out in the first three launches9. 
Moving on to more numerous groups of games (64, 128, 256….), one can 
note that the phenomenon of games that are more numerous at a certain 
launch compared to the previous one moves progressively; already at 64 
no group of games at the second throw is greater than the first. In only one 

                                                                    
9 The distribution of the 28 games in the first three launches has a much lower weight 
in the overall result of the average payoff than the remaining four, whose distribution 
is instead decisive in determining whether the price approaches or moves away from 
5. Taking some examples from the simulations carried out , with 18-7-3 the 
contribution is 3.14 instead of 3.43. But the other four come out 1-2-0-1, with a 
contribution of 6.5 (208/32), so the overall prize is 9.25 instead of 5. Another example: 
at 128 games a distribution of the first four throws is 64-32-15-9, that is 120 like the 
theoretical ones, but the remaining eight are distributed like this: 3-1-1-2-1. While 
the first four lead to 4.33, very close to the theoretical 4.27, the remainder lead to 
10.25, for an overall payoff 14.25 more than double than the theoretical 7. 
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case (always out of 100) they are equal; in one case the number of games 
released on the third throw are greater than in the second, and in two 
cases they are the same. 
The phenomenon therefore seems to be general: the great majority of 
games, from 128 upwards, are distributed in a way that, even if it is not 
equal to the theoretical distribution, it is not either far from it. The 
differences often tend to compensate each other in such a way that the 
contribution to the overall average premium does not differ much from 
that which would occur with a theoretical10 distribution. For example, in 
the case of 512 games, a payoff of 9 (that is n) was obtained with the 
following empirical distribution: 
  
Launches   empirical distribution         theoretical distribution                  deviation% 

 

I                                    245                                           257                                              -4,7 

II                                   142                                          128                                              +10,9 

III                                    56                                             64                                              -12,5   

IV                                    36                                             32                                               +12,5 

V                                     19                                              16                                               +18,8                        

VI                                   10                                                 8                                                +25 

VII                                    2                                                 4                                                 -50 

VIII                                  0                                                  2                                               -100     

VIII                                  2                                                  1                                              +100 

 
In the other distributions of the 512 games on the first and second throw, 
deviations were all lower in percentage terms, but the payoffs were 
different from 9 (generally, as mentioned, higher). 
For smaller sets of games, a distribution close to the theoretical one cannot 
have n as payoff, but n+1 or n+2; for example, with 24 the distribution 
8,4,2,2 gives a payoff of 5 while 8,4,2,1,1 gives a payoff of 6. In the 
simulation carried out with 100 repetitions, 4 was obtained with some 
distributions, all quite distant from the theoretical one (10,3,2,1 - 6,9,0,1 - 
6,7,3). With 25 games, the payoff of 5 was obtained with 16,10,3,2,1 in 
which the second and third throw differ from the theoretical distribution 
(8,4). Even the payoff of 6 can be obtained from a distribution very close to 
the theoretical one (16,8,4,2,2), but also from 20,6,2,1,3 which instead 
diverges clearly from it11. 

                                                                    
10 The only change is that one more game is attributed to the first throw. 
11 These payoffs were obtained in the 100 launches performed by Python. 
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 It is the last games, and often the very last (Appendix 2), that determine 
the result, which may be similar to the theoretical one, that is n, or more or 
less distant (especially much higher). 

3. Law of large numbers and the nth game 
 
Suppose we play N games (N=2n) where n is an integer. The theoretical 
distribution foresees that N/2 games come out at the first launch; there 
are other N/2 games to be played. The games that come out on the second 
launch are N/22 and there are still N/22 left, and so on. When one arrives 
at the games that come out at the nth launch, we will have N/2n/N/2n = 1, 
but it still remains the last game (Pianca 2007). But obviously, at the 
launch n+1, one cannot get half a game; so it will be 1 or 0. The same at the 
launch n+2 and so on. The meaning of all this is that, always respecting the 
theoretical distribution, there is 50% probability that the game will come 
out on throw n+1, 25% that it will come out on throw n+2, and so on. That 
is, if the empirical distribution always follows the theoretical one, 
repeating the exercise several times with a MC simulation, we should find 
50% of the time a game released at launch n+1, 25% at launch n+2 and so 
on. 
The problem of the nth game, therefore, is completely general every time 
we play a number of games equal to 2n where n is an integer. If n is not an 
integer, there is inevitably a deviation, however minimal, from the 
theoretical distribution. For example, if we play 100 games (approximately 
26.64) we could have either a sequence 50-25-13-6-3-2-1 with an average 
payoff of 7.5 or 50-25-12-6-3-2-1-1 with an average payoff of 10, both 
payoffs higher than 6.64. 
Returning to N=2n games with n integer, if we perform a series of throws, 
and if the distribution corresponds to the theoretical one, then the average 
value of N-1 games (N/21 come out at the first throw, N/22 at the second ... 
N/2n, i.e. 1 at the nth toss) is given by the general formula of the average 
value AV= n2n/(2n-1), for all repeated games. As one can see, AV converges 
rather quickly to n. But, as we have just said, the last game12 should come 
out 50% of the time on roll n+1, 25% on roll n+2, 12.5% on roll n+3 and so 
on, thus bringing the AV at n+2, n+4, n+8 and so on. The distribution would 
follow the theoretical one for n rolls, so it can follow 1 at launch n+1, or 0 
and then 1 at launch n+2, or 0, 0, and then 1 at launch n+3. Obviously, as it 
is easy to guess, and as we will see later, in reality almost never, especially 
if the number of games is high enough (in fact from 26 onwards), the 
empirical distribution coincides with the theoretical one, but the 
deviations are small. On the other hand, we find, in about half of the 
simulations, the existence of one empty launch (no game comes out) and 
in a few cases a high number of empty launches, which obviously implies a 

                                                                    
12 Last in the sense of the game that is missing to get N. 
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high payoff, sometimes very high. In such a way that, when the last game 
comes out, it determines most of the game's payoff. 
So by examining the results of the twenty simulated games, each with a 
hundred MC iterations, and repeating fifteen times (therefore for a 
complex of 30,000 games), we arrive at the following results: taking the 
payoffs released, with values n, n+2, n+4, n+8…, within a range of ± 0.5% 
we obtain on average the following results: 
n           12.8% 
n + 2    12.5% 
n + 4      9.6% 
n + 8      5.8% 
n + 16    3.4% 
n + 32    1.9% 
The set of the highest payoffs (n+64, n+128 ...) adds up to 0.9%. Therefore 
we have that, on the whole, while the mode is found at n, about one third 
of the set of games have high payoffs; in which the payoff is determined by 
games with a distribution very close to the theoretical one, since it 
conforms to the law of large numbers that a game can come out after a few 
empty launches13. 
If we take into consideration the payoffs with values n ± 10%, the 
percentages tend to double on average. Therefore, for payoffs greater than 
n, we can note thickening from one hand, and voids from the other; 
phenomenon that finds an explanation precisely in the action (even if 
imperfect) of the law of large numbers (Appendix 3). Simulating a group of 
games by MC, about half of the game groups give payoffs with some 
launches (particularly from roll n+1 onwards) empty. 
Furthermore, the fact that the empirical distributions are very close to the 
theoretical ones, particularly in the first launches, explains why the 
payoffs with values lower than n-1 are a percentage lower than 10%. In 
fact, in the case of four games (22) the chance that all four will be released 
at the first launch is 6.25%, but at sixteen games (24) we go down to 1.56% 
and at sixty-four (26) games we go down to 0.39%. Overall, of all the 
simulations, the lowest payoff has always values ranging between 60% 
and 80% of n. 
 
4. Foley and the relation between payoff and probability 
 
We have seen that the distribution of MC payoffs shows a mode (12.8%) 
around n, but with a very strong variability. In tests carried out with ten 
thousand MC iterations (Rodriguez 2005, Paladini 2017) or with one 

                                                                    
13 To give just one example, in one of the fifteen simulations of the 65,536 games (216) 
it was obtained a payoff of 528.34. This payoff was achieved with a game released on 
25th throw, contributing 512 to the overall payoff. It can be deduced that all the other 
games have given a contribution of 16.34, which can be had when the distribution is 
very close, even if not identical, to the theoretical one. 
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million iterations (Klyve and Lauren 2011, Olivero 2016), the mode always 
ranks around 12.6%, with a strong asymmetry on the right. The 
probability that a group of 2n games will have an average payoff greater 
than n is therefore very high. Foley (2015) has built an interesting model 
of the relationship between n, as the average price per game, and p, the 
probability for the player to gain or not suffer losses (payoff greater than 
or equal to n, 1-p being the reciprocal probability for the dealer). He starts 
from the observation that as the number of games increases, the average 
payoff tends to grow, but "that the mean one arrives at even after a large 
sample is not enough to predict with any reasonable accuracy the mean 
one will get if one repeats the experiment again". Foley shifts his attention 
to the median of an MC distribution of various sets of games, noting that it 
tends to grow steadily as the number of simulated games increases. 
The model he arrives at is built on the basis of several tens of billions of 2n 
games, with n going from 1 to 15, and aims to identify a relationship 
between n and p, the probability of winning (or breaking even). The 
relationship is as follows: 
(1)        f (n, p) = (2,53+n) (π +1- 1/µ) 
             where π = [(p/(1-p)) (0,2+0.01n)]/µ; µ = 1/(0,65+0,115n)2 
  
Foley’s comment is: “For example, we can take a look at the famous case of 
2048 trials by Compte de Buffon in which he arrived at $9.82 as the mean 
gain from his experiment. According to the model that we have found, that 
value would be only the 14th percentile of the distribution. If a casino had 
done a similar experiment to Compte de Buffon14 and set the entry fee at 
$9.82 then there would be an 86% chance of loss. The 86th percentile, an 
event of similar likelihood on the higher end of the distribution, would be 
$28.83”.  
We can ask ourselves what probability Buffon (as a dealer) would have 
had by setting the unit price of the game to 11. The answer is that he 
would have been in the 25th percentile, thus leaving to a player three-
quarters of the probability. By calculating the relationships between n and 
p, we see an increasing relationship, and with 230, that is, over a billion 
games, a price of 30 increases the percentage to the 28th percentile15. By 
increasing the number of games, however, the odds no longer increase, as 
they begin to decrease slightly. It should also be considered that, as the 

                                                                    
14 On the Buffon’s experiment, see Appendix 2. 
15 Passing from n = 4 to n = 16, the Foley formula indicates probabilities ranging from 
16.7% to 26.2%, with decreasing increases. In the simulations carried out, it is 
observed that the fifteen iterations, taking the central values as before, have a 
correlation index (with the Foley probability) of 75.2%. A correlation therefore still 
exists, but clearly weaker, which is matched by the fact that the standard deviations 
for the various groups of games (i.e. the fifteen values of p for each n) were almost 
ten times higher (on average around 5) . There remains the problem of how to 
interpret this difference between the values found in the case of the medians (p = 0.5 
for all n) and those of the different probabilities for the different ns. 
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number of games increases, even a small difference from n can inflict 
colossal losses on the dealer (more likely) or the player (less likely). 
According to the Foley formula, what would be the fair price in the case of 
an equal probability between player and dealer? Observing the formulas, it 
can be seen that in the case of p/(1-p) = 1 function (1) is reduced to 
 
(2)                          f (n, 2-1)   = n+2,53     
 
a price that is quite close to n+2, that is to the average payoff in the event 
that the distribution is equal to the theoretical one and in which the last 
game comes out at throw n+1. 
 
5. A test of Foley’s median 
 
I carried out, for the twenty groups of games, one thousand five hundred 
MC iterations; thus obtaining a total of three hundred medians. The 
standard deviations (mean square error) of the twenty groups are very 
low; between the highest and lowest values, the difference is on average of 
two units, so the standard deviations are around 0.5. Let's see the 
relationship between the central value and that of Foley (i.e. n+2.53). The 
central value is obtained by taking the average of the three central values 
for each group of games: 
 
Number of games    Empirical median        Foley’s median 
24                                        6,69                                  6,53 
25                                        7,47                                   7,53 
26                                        8,27                                   8,53 
26,59                                    9,48                                   9,12                
27                                        9,5                                     9,53 
28                                       10,42                                10,53 
29                                       11,49                                11,53    
29,59                                   12,02                                12,12  
210                                     12,7                                  12,53 
210,59                                 13,01                                13,12 
211                                     13,89                               13,53  
211,59                                 14,3                                  14,12    
212                                     14,55                               14,53     
212,59                                 15,36                               15,12 
213                                     15,81                               15,53 
213,59                                 15,98                               16,12 
214                                     16,66                               16,53  
214,59                                 17,3                                 17,12                       
215                                     17,57                               17,53 
216                                     18,52                               18,53     
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As can be seen, the two series have very similar values and trends; the 
correlation index (Pearson) between the two series is 99.8%. The 
analogous index for each of the single median fifteen (of the twenty 
games) compared to that of Foley ranged between 98.4% and 98.6%. 
Moving to the central value, the index therefore rose by more than one 
point16. In truth, by increasing the Foley values by three hundredths of a 
point (i.e. n+2.56), the correlation index goes to 99,9%. But it is plausible 
to think that by repeating the iterations there could always be variations 
of a few cents more or less.  
It seems therefore to be a confirmation, in the case of MC simulations of N 
St. Petersburg games, of the Foley value as regards to the median of the 
simulations (i.e. when the probability is even for both player and dealer), 
with the simple relation: n+2.53. 
 
6. Conclusion  
 
Can the Foley value (n+2.53) be considered a fair price? It is possible to 
give a positive answer, even if one has to depart to some extent from the 
classic St. Petersburg game. The original logic consists in giving a price for 
a single game. In Feller’s version we have a price for the average payoff of 
several games; the difference between the unit price and the payoff, 
multiplied by the number of games, determines the player or dealer win. 
But in this way, even using the Foley value instead of n, the dealer would 
be exposed to much higher losses than the player17, given the asymmetry 
on the right in the payoff distribution, highlighted by all the MC 
simulations. That is, although there is an equal probability of winning or 
losing between the two sides, the possible losses of the dealer would be 
much greater than those of the player. 
The only way to put player and dealer in an equal position is to compare 
the median of an MC simulation of N games with the Foley value. The 
difference should be, apart from exceptional cases, of the order of one 
monetary unit or less. Of course this difference has to be multiplied by N in 
favour of the winning side18, so that higher N implies greater win and risk. 
The departure from the original game of St. Petersburg therefore takes 
place in two steps: the first step consists in playing not a single game but 
several ones; the second in repeating the same number of games with the 
MC technique and checking the median value with respect to the Foley 
value. In this way the odds of player and dealer would be balanced; the 
value of the unit stake would depend on their love for risk. 
It is worthwhile to note the difference, with respect to the proposed 
solution of a fair price for repeated games, from the case discussed in 

                                                                    
16 Godex and Dulaney (2012) provide nine medians with iterations of 100 MC (games 
from 10 to 109); the correlation with the Foley’s median is 82.6%. 
17 The last case happens when the payoff is less than n+53. 
18 The choice of a more or less large N therefore affects only the amount of the stake. 
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Samuelson (1963), where he proves that if someone declines a single 
gamble, he should decline any number of repeated gambles, if preferences 
conform to expected utility theory. Samuelson considers the opposite view 
as a fallacious application of the law of large numbers. Chew and Epstein 
(1988) instead obtain a positive answer, using non expected utility. Here 
things are different, since what is implied is a reference to the median of a 
MC simulation of a given number of St. Petersburg games. As we have 
shown, considering each single payoff19 of a MC simulation would imply an 
almost certain loss for the dealer.      
 
 

Appendix 1 
Feller’s approach 
 
In 1945 the statistician William Feller approached the problem of the St. 
Petersburg paradox by a different point of view from that on which 
scholars had concentrated for two centuries. He argued that even if the 
single game has an infinite expected value, due to the fact that the prices 
increase in the same way as the probabilities decrease, it was however 
possible to define the “fair” price of a number N of repeated games. He 
showed that the average "fair" price P* tends in probability to log2N when 
N tends to infinity (Feller 1945 and 1957). In other words, if N=2n, the 
"fair" price P* will be the closer to n the higher the latter. 
Therefore, even if the expected value of the single game is infinite, in the 
case of a large number of games, a fair price can be defined, that is n20. He 
warned, however, that for a given N the price n could result in significant 
losses for the players; this is the reason why he used the term "fair" in 
quotation marks. 
To clarify the logic of Feller's reasoning, if the number of throws follows 
the distribution given by the theoretical probabilities (i.e. that heads come 
out at the first throw with probability 50%, at the second with probability 
25%, etc.) the total price Pt is given by 
                      Pt = (2n/2)2 + (2n/4)4 + …. + (2n/2n)2n, that is n times 2n; hence 
P* = n. 
Obviously the result is necessarily approximate if N is not a multiple of 2, 
or if n is not an integer, because in this case the games cannot come out, at 
any number of launches, a fractional number of times. 
For example, if we suppose that we have 128 (27) games, and that these 
are distributed exactly according to the a priori probabilities: 64 at the 
first throw, 32 at the second, 16 at the third ... + 1 at the seventh; then the 
total payoff will be two times 64 plus four times 32 plus … arriving at 896. 
Dividing the total payoff by 128 we get exactly 7. It should be borne in 
mind, however, as mentioned in the text, that only 127 games have been 

                                                                    
19 Or, it is the same, the average payoff multiplied by N. 
20 If, as Feller assumed, the prize at the first throw is 1 instead of 2, the fair prize is n/2. 
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released, not 128; it is the problem of the last game. Obviously it is by no 
means certain, indeed it is very unlikely, that in the case of 127 coin tosses, 
these are distributed exactly with 64 on the first toss, 32 on the second…. 
And so on. But as the number of outcomes (and therefore of throws) 
increases, the law of large numbers tells us that the distributions will tend, 
in probability, to become ever closer to the progression in base 2, in the 
sense that the probability, that is the difference between the average 
revenue of the games and n, tends to zero (more precisely the difference is 
less than an ε small at will). 
 

Appendix 2 
 
Buffon’s experiment 
 
Georges-Louis Leclerc, Comte de Buffon (1777, English translation and 
commentary in Hey et al. 2010), the famous naturalist, wrote some essays 
on probability and dealt with the St. Petersburg paradox; he put forward 
all the hypotheses developed at that time: decreasing marginal utility21, 
the non-existence of a bookmaker with infinite wealth, the impossibility of 
the game lasting indefinitely, the zeroing of odds greater than 1/10,000. 
But he did something that no other scholar had done: an experiment. He 
instructed a boy to flip a coin, observing how many times "heads" came 
out on the first toss, how many per second and so on, up to 2048 games. 
Buffon's results: 
 
 

Number of launches      Empirical outcomes       Theoretical outcomes                       Spread% 

            1                                                1060                                 1024                                    +3,52 
            2                                                  494                                    512                                     -3,52       
            3                                                  232                                    256                                     -9,32     
            4                                                    137                                      128                                     +7,03       
            5                                                     56                                        64                                     -12,5    
            6                                                      29                                         32                                      -9,38 
            7                                       25                              16                         +56,25 
            8                                                   8                                         8                                          0 
            9            6                           4                                       +100 

          10                                                          0                                              2                                        -100 

          11                                                          0                                               1                                       -100 

 
                                                                    

21 Buffon also proposed a function such as: y = x/(a+x), where a is the initial wealth 
and x the expected gain. The best known function is obviously the logarithmic 
Bernoulli function. Even before the publication of Bernoulli's work, Gabriel Cramer, in 
a letter to Bernoulli's uncle, had suggested the square root of x. 
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As one can see, the percentage differences tend to increase passing from 
the first launch to the following ones (except for the eighth launch where, 
by chance, there is coincidence). 
It can be added that the games released in the first six launches (overall 
only seven games less than the theoretical ones) account for only 20% of 
the lower final payoff. It is the final tosses, and in particular the fact that 
Buffon did not went beyond the ninth toss, that determined the result of a 
10.7% lower payoff than the theoretical one (9.82 against 11)22. 
 
Vivian’ test 
 
Let's now take a leap of more than a century (we are now in the computer 
age) and examine Vivian's simulation exercise (2013, pp. 357-358) with 
268,435,456 games (228). 
 
 

Number of launches      Empirical outcomes       Theoretical outcomes          Spread% 

 

  1                                        134.217.760                          134.217.728                       2,3841e-7 

  2                                          67.108.768                            67.108.864                       -1,4305e-6 

  3                                          33.555.680                            33.554.432                         3,71933e-0,5         

  4                                          16.773.216                            16.777.216                        -0,00023842 

  5                                             8.390.976                              8.388.608                         0,00028229 

  6                                             4.195.936                              4.194.304                         0,0003891 

  7                                             2.096.288                              2.097.152                        -0,00041198 

  8                                             1.048.608                              1.048.576                         3,05176e-5 

  9                                                522.880                                 524.288                         -0,00268555 

 10                                                 262.592                                 262.144                          0,00170898 

  11                                                 130.240                                 131.072                         -0,00634766 

12                                                   68.352                                   65.536                          0,04296875 

13                                                   31.744                                   32.768                         -0,03125 

     14                                                   16.192                                   16.384                         -0,01171875 

                                                                    
22 Buffon realized that the games were not 2048 (211) but 2047, like the theoretical 
outcomes. However, he did not attach importance to it (Paladini 2017). 
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      15                                                     8.320                                      8.192                          0,015625   

      16                                                     4.288                                      4.096                          0,046875 

      17                                                     2.080                                      2.048                          0,015625 

      18                                                        864                                      1.024                          -0,15625 

      19                                                        256                                         512                          -0,5 

      20                                                        160                                         265                          -0,375 

      21                                                          64                                         128                          -0,5     

      22                                                          32                                            64                          -0,5  

     23                                                            64                                           32                            1 

     24                                                            64                                           16                            3    

     25                                                               0                                             8                           -1  

     26                                                            32                                             4                             7   

    27                                                                0                                             2                            -1  

    28                                                                0                                             1                            -1   

    29                                                                0                                             1                            -1  

 
The games released up to the 11th launch differ from the theoretical ones 
with percentages much lower than 1%, up to the 17th. The games released 
at the 18th launch are 864 empirical against 1024 theoretical ones, with a 
difference of 15.6%; the number of games released in subsequent launches 
will have larger and larger spreads. Until the 21st throw, the sum of the 
games released in the exercise differs from the theoretical one by only 64 
games23. 
But, despite being less, the remaining empirical games are concentrated 
on the 24th throw (64 against 16 theoretical), and above all on the 26th 
throw (32 against 4 theoretical), so the average empirical payoff (34.04 
against 28 theoretical) is 21.6% higher. Therefore the 192 empirical 
games24, that come up between the 22nd and the 26th throw, are those 
that determine the result25. 
Thus in the case of Buffon's simulation the player, by agreeing to pay 11-
9,82 monetary units per game, would have lost 2,417 monetary units; the 
dealer, in the case of Vivian's simulation, by agreeing to paying 6,04 

                                                                    
23 I.e. 268.435.264 empirical instead of 268.435.328 theoretical outcomes. 
24 That is a 7,15256e-7 percentage. 
25 In Vivian's hypothesis, the last game comes out not on the first launch but on the 
29th, thus resulting in a payoff of 30, and in any case creating a loss of over a billion 
monetary units. 



17 

 

E-PFRP N. 44 

2020 

 

(34,04–28) units per game26, would have lost 1,626,718,863 currency 
units. Only by establishing that the monetary unit of the game is one 
millionth part of a euro (or dollar), the dealer could avoid a catastrophic 
loss. 
In conclusion, 98% of the games in the case of Buffon (211) and 99.99999% 
in the case of Vivian (228), are distributed not very far from the theoretical 
distribution; most of the overall final difference is in fact determined by 
the games released respectively from the seventh launch onwards in the 
case of Buffon and from the 23th onwards in the case of Vivian. The results 
of these two simulations coincide with the 30,000 MC simulations 
illustrated in the text. The conclusions are therefore: I) as the number of 
games increases, most of them do not significantly differ from the 
theoretical distribution; but II) the overall average price depends crucially 
on the few games of the highest throws, often it is a single game. This fact 
reflects the law of large numbers. 
 

Appendix 3 
 
Two mathematicians (Klyve - Lauren 2011), who know nothing about the 
St. Petersburg paradox or Feller's limit theorem, having read, in a text on 
the history of mathematics, of Buffon's experiment, decide to repeat it, 
finding a payoff average equal to 18.32, much higher than Buffon's 9.82. 
Getting a suspicion, they tried the following number of games: 
 

Number of launches      Empirical outcomes       Theoretical outcomes          Spread% 

1000             7.80       64     17,5                     
2048                             18.70                   11                           70    
5000                        15.49                     12,29                26 

10000                     14.93                       13,29                                      12,3 

50000                                   15.60                                     15,61                                       0  

100000                                 21.15                                     16,61                                       27,3 

500000                                 19.46                                     18,93                                       2,8 

1000000                              25.69                                     19,93                                       28,9 

 

They thus discover that there is a tendency for the average payoff to 
increase with the number of games (from 7.80 in the case of a thousand to 
25.69 in the case of one million), and that this was a well-known fact, at 

                                                                    
26 11 and 28 are the n of the two games, which according to Feller constitute the 
“fair” price of the game. The figures are halved if, as was usual in Buffon's time, we 
start from one monetary unit at the first throw instead of two. 
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least since Feller's time27. But in addition to the fact that the average 
payoff grows as the number of games increases, it is also noted that the 
differences with respect to the theoretical payoff are very large. For 
example, the payoff obtained in the case of 100,000 games (21.15) is 
higher (by 27.3%) than the theoretical one, and also higher than that of 
500,000 games (19.46), which is instead rather close to the theoretical one 
(18.93). 
    The fact of having obtained, in the case of 2,048 games, a payoff equal to 
18.70, therefore double than that of Buffon, pushes the two authors to 
carry out a MC simulation with a million interactions. They find a 
distribution not only strongly asymmetrical, progressively decreasing, but 
with numerous teeth and also empty intervals. 
The result obtained amazes them; the surprise emerges from their words: 
“We were taken aback at the resulting bizarre distribution. When we 
showed the graph around, several colleagues expressed surprise. One 
questioned our random number generator! What sense can we make of 
this picture? We immediately see that the most likely values are indeed 
those near log2(2048), as expected. However, the rest of the graph is 
surprising. Its comb-like, fractaline quality demands explanation". Indeed, 
if they had been aware of Rodriguez's (2005) work28, at least the strong 
distribution asymmetry should not have surprised them. Furthermore, 
repeating the 2,048 games a million times involves simulating over two 
billion games; now the fact that the average payoff increases as the 
number of games increases implies that, if the overall average payoff were 
not to deviate too much from the theoretical one of two billion, that is 230.9, 
it would be close to 30.9. Since the modal value of the distribution is 
around 11, it is evident that the payoff distribution must be distributed in 
a highly asymmetrical way, reaching some 330 payoffs, that is thirty times 
greater than the modal value. 
Anyway, the fractal structure (even if imperfectly so) of the distribution 
constitutes the novelty that emerges from the MC simulation of the 2,048 
games. Klyve and Lauren's explanation focuses on the teeth of the 
distribution. They note, correctly, that the average payoff of a Buffon-style 
experiment is determined, above all, by the highest value reached by a 
given game. The implicit hypothesis is that the games are distributed, even 
if not perfectly, according to the theoretical distribution. For example, 
looking at a tooth at the average payoff of 42, they notice that it can be the 
result of a game that comes out on the sixteenth throw. Now 216/2048=32. 
If the other 2047 games come out at various throws according to the 
theoretical distribution (even if not perfectly), so to have an average 
payoff around 10, the tooth at 42 finds a logical explanation. But we can 

                                                                    
27 But Buffon had already had the intuition of this fact, even if he hadn't developed 
this intuition. 
28 However Rodriguez was on the wrong track, trying to find a rule concerning the 
growth of the mean  payoff of the N games.  



19 

 

E-PFRP N. 44 

2020 

 

have the same result with two games that come out at the fifteenth launch, 
or three games that come out at the fourteenth launch; the probability of 
these events is the same. This determines a thickening of games with 
payoff 42. 
Repeating with 217 and 218 we identify two other teeth of the distribution. 
It is interesting to note that, repeating the MC simulation of Buffon's games 
for a million times, Olivero (2016) finds a similar distribution, although 
not identical, to that of the two authors, with teeth located at the same 
payoff levels. 
The other peculiar aspect is that of the presence of empty spaces, that is, 
ranges of values in which no payoff has been released; the same 
phenomenon is found in Olivero's simulation, even if the coincidence is 
approximate. Empty ranges are found between 180 and 200, between 220 
and 260, between 305 and 325. Now that the phenomenon occurs in the 
case of a very limited number of games it is easily explained. For example, 
with two games it is not possible to obtain an overall payoff of 14, or 22 or 
26. Even with three games, it is not possible to have a payoff of 46 
(32+14), or 54 (32+22) or 58 (32+26). But here we have empty intervals 
of whole tens or more. Furthermore, MC simulations performed by Olivero 
(2016) show that even with games of size 213, 214, 215, with some small 
differences, the gaps occur in corresponding intervals. 
The explanation is due to the fact that there are distributions which, 
although possible, are however highly improbable, because they would 
imply a too marked deviation from the theoretical distribution29; if the 
games are 2n, it is very unlikely that those that come out in the first 
launches differ significantly from 2n/2 and 2n/4, as we have now seen by 
examining the two distributions of Buffon and Vivian's games. Only a small 
percentage of games (the last ones) deviate more from the theoretical 
distribution. 
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