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Dynamics in an OLG model with non-separable preferences

Abstract

This paper presents sufficient conditions for existence and uniqueness of a steady state
equilibrium in an OLG model with non-separable preferences and analyzes the implications
of such assumption for the local stability of the steady state equilibrium. The conditions for a
stable solution are derived under the assumption that habits are transmitted both across and
within generations. Under this assumption, monotonic convergence to the steady state is not
always assured. Both competitive and optimal equilibrium may display explosive dynamics.

JEL Codes: D50, D91, E13,E32, 041
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1 INTRODUCTION

1 Introduction

This paper derives sufficient conditions for existence and uniqueness of a steady state equi-
librium in an OLG model with non-separable preferences and analyzes the implications of
non-separable preferences for the local stability of the steady state equilibrium.

The main assumption of this paper is that habits are transmitted both across and within
generations, i.e. habits are transmitted from one generation to the next one (intergenerational
spillover) and from one period to the next one (intragenerational spillover). This assumption
is modeled in the paper with non-separable preferences both across and within generations.

In the literature on stability of the equilibrium in OLG models, Diamond [1965] model
represents the benchmark model with separable preferences. de la Croix [1996] prove that the
optimal solution in the Diamond [1965] model is always characterized by monotonic conver-
gence to the steady state. Michel and Venditti [1997] provide sufficient conditions for stability
of the equilibrium in an OLG model with separable preferences across generations only and
prove that the optimal solution may be oscillating and optimal cycles may exist. de la Croix
and Michel [1999] provide sufficient conditions for existence and uniqueness of the equilibrium
in an OLG model with separable preferences within generations only and prove that the opti-
mal solution may display damped oscillations even when the social planner does not discount
the utility of future generations (golden rule case).

The contribution of this paper is to provide sufficient conditions for existence and stability
of the steady state equilibrium in an OLG model in which preferences are non-separable both
across and within generations.

Since the intergenerational transmission of habits generates an intergenerational externality,
both the competitive equilibrium and the social planner problems are analyzed. The paper
derives conditions under which the competitive economy converges to or diverges from the
non trivial steady state and shows that this steady state may display either fluctuations or
explosive behavior. Then it studies the conditions under which the optimal solution is stable.
Under the assumption of intergenerational and intragenerational spillovers, convergence of the
optimal solution to the non trivial steady state is not always assured. The optimal solution

may display either locally explosive dynamics or damped oscillations.
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2 THE MODEL

This paper shows that combining different forms of non-separable preferences is not in-
nocuous as the dynamics of the model and the stability of the equilibrium are considerably

affected.

2 The model

The model is a simple extension of the Diamond [1965] economy without outside money. At
each date, the economy is populated by three generations (young, adult and old), each living for
three periods. The growth rate of population is zero. The young generation has no decision to
take and only inherits habits h; from the previous adult generation according to the following

equation

he = ¢y (1)

where ¢f_; is the consumption of the adult generation at time ¢—1. The adult generation draws
utility from consumption of the quantity cf, given its own stock of habits h;. When old, each
agent draws utility from consumption of the quantity cf,;, given her own past consumption

c?. The intertemporal utility function of each adult agent is

Ulct, ctyashe) = u( ¢f —0hy ) +o(cfy —dcf) (2)
passive effect active effect

where # € (0,1) measures the intensity of the intergenerational spillover effect due to the
inherited habits (labeled as passive effect in equation (2)) and § € (0, 1) measures the intensity
of the intragenerational spillover effect due to the persistence of own preferences over time
(labeled as active effect in equation (2)). In other words, we assume that adult consumption at
time t — 1 determines a frame of reference against which adult individual consumption at time
t is judged and that the depreciation rate of these inherited habits is so high that it no longer
affects the evaluation of consumption when old. We also assume that adult consumption at
time t determines a frame of reference against which old individual consumption at time ¢+ 1
is judged and that persistence of preferences is so high that neither young consumption at time

t nor that at time ¢ — 1 affect in any possible way the evaluation of consumption when old.
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2 THE MODEL

Moreover we assume that the utility function is strictly increasing with respect to consump-
tion and decreasing with respect to the stock h: wuca > 0, veo > 0, up < 0, Ucaca < 0, Veoco < 0,
upp < 0 and ucap, > 0. The assumption ucap, > 0 amounts to postulating that an increase in
the stock h rises the desire for consumption. We also assume that starvation is ruled out in

both periods

lim tea + Ve = lim Ve = 00 (3)
c¢—0 cg’_HHO

and that the utility function is strictly concave under the following condition

Uca

o<

(4)

Vo
Note that if preferences are separable as in Diamond [1965], § = 0 and strictly concavity
is always ensured by the standard set of assumptions on marginal utility, i.e. uc. > 0 and
veo > 0. If preferences are non-separable, > 0 and concavity is ensured only if condition (4)
holds. Otherwise, the utility function is flat (6 = 7=-) or convex (6 > <.
At each date a single good is produced. This good can be either consumed or accumulated as

capital for future production. Production occurs through a constant returns to scale technology.

Per capita output y; is a function of capital intensity k;

yr = f(ke) (5)
in which f() is a neoclassical production function with fi > 0 and fxk < 0. Assuming total
depreciation of capital after one period, the resource constraint of the economy is

Y = f + & + ke (6)

At date 0 the economy is endowed with a given quantity of capital per capita kg and a level

of inherited habits hg.
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3 THE COMPETITIVE ECONOMY

3 The competitive economy

The competitive behavior of firms leads to the equalization of the marginal productivity of

each factor to its marginal cost:

Ry = fr(kt) (7)

w = f(ke) = ke fr(ke) (8)

where R; is the interest factor paid on loans and wy is the real wage paid to workers.
The adult generation works during the period ¢ and sells one unit of labor inelastically at

any real wage wy, consumes the quantity ¢ and saves s; for the next period by holding capital

el =wy — ¢ 9)

while the old generation spends all her savings s; plus interest matured and consumes cf,

fy1 = Reyise (10)

The maximization program of each individual is thus to choose cf, cf,; in order to
(e = 0h) + vl — ocf)
subject to ¢} = w; — $¢
ciy1 = Rigp1se
where wy, Ry;11 and hy are given to the agent. Assuming an interior solution, under rational

expectations, the above decision problem leads to following first order condition

Uea — (S’Uca = Rt+1’Uco (11)

With respect to a standard Diamond [1965] model in which § = 0, marginal utility of the

young is lower, as ve.o > 0: in order to achieve the same level of satisfaction when old, adults
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3 THE COMPETITIVE ECONOMY

need to correct their satisfaction by the (negative) habit effect.

Equation (11) allows to define the following saving function

St = S(U]t, Rt+1, ht) (12)
The partial derivative of the saving function (12) are
Ucaca —(veo + UCOCOC?—H) —Oucap,

Sw = >0 Sy = sy = <0
Ucaca + Rt2+1vcoc" Ucaca + R?+1vc°co Ucaca + R%+1Uc°co

Since the utility function is concave and there is no wage income in the last period of life,
savings increase with wage income. The effect of the interest rate is instead ambiguous and
depends on the value of the intertemporal elasticity of substitution, %. Finally, the
effect of rising inherited habits is negative: when the passive effect is low, the agent has a
sober lifestyle and savings are high; when the passive effect is high, the agent spends much on
consumption to maintain a life standard similar to the one of their peers and their propensity
to save is low.

The equilibrium condition in the capital market implies

kit1 = st (13)

Combining equations (1), (7), (8), (12) and (13), the competitive equilibrium is defined as

a sequence {ki, hy;t > 0} which satisfies

ki1 = s(f(ke) — ke fu(ke)s fe(ker1), he) (14)

hiv1 = f(kt) — ke fe(ke) — s(f(kt) — ke fi(ke), fr(bt1), he) (15)

Equation (14) is the clearing condition of the asset market, given that the labor market
is in equilibrium (i.e. that (8) holds). It reflects the fact that savings are to be equal to the

capital stock of the next period. Equation (15) is the equation (1), given that the asset and
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3 THE COMPETITIVE ECONOMY

the labor markets are in equilibrium. It appears from the system above that the equilibrium

can be characterized by using the following forward dynamic planar map:

k= s(f(k) = kfi(k), fr(k), h) (16)
h=f(k) = kfe(k) = s(f(k) = kfw(k), fu(F), h) (17)

Proposition 1. A positive steady state equilibrium exists and is unique if and only if det(I —
JCEY £ 0, where JOF is the Jacobian matriz associated to the competitive equilibrium (14)-(15)

and evaluated at steady state (k,h).
Proof. See Appendix A.1. O

Stability of the steady state associated to the competitive equilibrium (14)-(15) depends on
parameters 6 and d. Since for some values of these parameters the hyperbolic condition may
not be satisfied, it is necessary to look for the critical value of § and &, # and 6, at which
the change in trajectory takes place (bifurcation) and the fixed point becomes non-hyperbolic.
Non-hyperbolicity may arise when (a) at least one eigenvalue equals to 1 or to —1 or (b) if the
eigenvalues are complex and conjugate. If one of these conditions is met, linear approximation
cannot be used to determine the stability of the system. Otherwise, local stability properties

of the linear approximation carry over to the non-linear system.

Proposition 2. Suppose Proposition 1 holds and suppose that s, = (1;‘}7;{’”“), Sp > f;%k and

_|8h| <14+ |1- M . Then the determinant of the Jacobian matriz J°F is positive and
1—5rfrk 1—sr frk

equal to 1, the trace T?E is positive and smaller than 2, and the discriminant A is negative.
Proof. See Appendix A.2. O

Proposition 3. Suppose Proposition 2 holds. Then the eigenvalues of J°F are complex and

conjugate and the steady state is stable if and only if moda(0,0) < 1 and unstable otherwise.

Proof. If modo(f,5) < 1, the system is characterized by a spiral convergence to the steady state

equilibrium; if mod o (#,d) = 1, the system exhibits a period orbit; and if mod (6, §) > 1, the
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4 THE OPTIMAL SOLUTION

system exhibits a spiral divergence from the steady state equilibrium. The system is therefore

characterized by a bifurcation identified at (6, ) which are the roots of det(J¢F) = 1. O

The competitive equilibrium is thus characterized by spillovers from one generation to the
next and from adulthood to old age. The main components of the intergenerational spillovers
are: savings by old people and past consumption levels of the previous generation. While the
process transforming the savings by the old into income for the adult displays decreasing returns
to scale due to the characteristics of the production function, the process transforming past
consumption of the adults into consumption of the next generation displays constant returns
to scale due to the characteristics of the utility function. The intragenerational spillovers is
only given by the individual past consumption that feeds individual’s habits from adulthood to
old age. This process displays constant returns to scale, again due to the characteristics of the
utility function. Thus, even though the intergenerational bequest in terms of higher wages will
not be sufficient to cover the intergenerational bequest in terms of higher inherited habits, the
intragenerational spillover leaves a bequest in terms of higher persistence. The combination
of the positive bequests in terms of higher wages and higher persistence is sufficient to offset
the negative bequest in terms of the higher externality. This leads to an increase in saving to
maintain future standards of consumption that induces an expansion. When the enrichment is
strong enough, the externality has already reverted to higher levels, allowing a fall in savings
and the start of a recession. As the effect due to persistence is stronger than the effect due to the
externality, the model is characterized by converging cycles. Thus, the competitive equilibrium
still displays fluctuations, but the bifurcation corresponds to different critical values of  and
0. Depending on the parameters 6 and d, the economy may converge to or diverge from the

steady state.

4 The optimal solution

As the inherited habits introduce an externality in the model, the decentralized equilibrium is
implicitly sub-optimal compared to the equilibrium that would maximize the planner’s utility.
Thus, hereafter, we focus our attention to the optimal solution and consider a social planner
who chooses the allocation of output in order to maximize the present discount value of current
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4 THE OPTIMAL SOLUTION

and future generations.
Assuming that the social planner’s discount factor is 7, the social planner maximization

program is thus to choose {c{, ¢} and {k;, h;} in order to

oo

C?,Igfl?];i{yht tz:;vt [u(cf — Ohy) + iv(cto —6cf)]
subject to  y; = ¢ + ¢ + ki1 (18)

hy = ¢4
and given kg and hyg.
First order conditions are:

uea (cf — Ohy) + yup(cfy — Ohip1) = j:;?}co(cg — 0hy) —vp(cfyy — 0hyyr) (19)
v = 8h1) = ver (s = ) il (20)

Equation (19) is a condition for optimal intergenerational allocation of consumption be-
tween adult and old alive at the same time. Marginal utility of the adult, corrected by the
social planner to internalize the taste externality, is equalized to marginal utility of the old
is equal to the marginal utility of the old. Note that, due to the presence of the taste exter-
nality and contrary to the standard Diamond [1965] model, this social planner’s first order
condition does not respect the individual first order condition (11). Moreover, with respect
to the standard Diamond [1965] model in which § = 6 = 0, marginal utility of the adult,
uea(cf — Ohy) + yup(ct; — Ohyy1), is lower, as up < 0, while marginal utility of the old,
%vco (¢f —dhy) —vp(cfyq —0hyt1), is higher, as v, < 0. Equation (20) sets the optimal intertem-
poral allocation.

The optimal equilibrium is defined as a sequence {c{, ¢f, k¢, hy;t > 0} which satisfies equa-

tions (19), (20), (6) and (1) simultaneously:
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4 THE OPTIMAL SOLUTION

tea (¢ — Ohy) + Yun(clyy — Ohyy1) = ivco(cf — 6hy) — vn(Zyy — Ohiya) (21)
i”co(cf — 0hy) = veo(cfy 1 — Ohus) fi(Fis1) (22)

he = ¢ (23)

kip1 = fke) —cf = cf (24)

It appears from the system above that the steady state (c¢%, ¢°, k, h) of this optimal economy

is defined by

tga (% — Oh) + ~yup(c® — OB) = ivco(co — 6h) — vp(c® — Oh) (25)
— = fr(k) (26)

h= (27)

k= fk) — ¢ — (28)

Equation (25) shows that in an economy with passive habits, the marginal utility of the adult
is lower than the corresponding marginal utility in the standard Diamond [1965] model: the
inheritance represents a benchmark from which individuals want to depart. Even the marginal
utility of the old is higher than the corresponding marginal utility in the standard Diamond
[1965] model: the same interpretation carries on. Once the externality associated with parents’
habits is internalized, persistence affects marginal utility in the same way as the externality:
they both induce consumers to save. Equation (26) is the modified golden rule: the introduction
of intergenerational and intragenerational spillovers does not modify the optimal steady-state
stock of capital which remains fixed at the modified golden rule level. Equations (27) and (28)

have been already discussed in the paper.

Proposition 4. A positive steady state equilibrium exists and is unique if and only if det(I —
J50) £ 0, where J5C is the Jacobian matriz associated to the optimal equilibrium (21)-(24)
and evaluated at steady state (¢, c°, k,h).
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4 THE OPTIMAL SOLUTION

Proof. See Appendix A.3. O

Proposition 5. Assume that k and h are state variables and that ¢* and c® are jump variables.
Locally explosive dynamics is possible, depending on the sign of the trace T?O and of the
element Z of the Jacobian matriz J5C. If A > 0, the eigenvalues are real and local dynamics
is either explosive or monotonic. If A < 0, the eigenvalues are complex and conjugate and

local dynamics displays either explosive or damped oscillation.

Proof. See Appendix A.4. O

The above proposition identifies all possible dynamics of the optimal steady state equilib-
rium. Under the assumption that the trace T§O and the element Z are both positive, locally
explosive dynamics is identified by an unstable node if the eigenvalues are real and by an un-
stable focus if the eigenvalues are complex and conjugate. Under the assumption that qu O and
Z are both negative, the optimal solution is a stable saddle point, only if the constraints on the
elements of the Jacobian matrix J° respect the condition on negativity of the trace. Under
the assumption that T?O and Z have opposite sign, the optimal solution may be either stable
or unstable: if stable, dynamics displays damping oscillation to the steady state; if unstable,
locally explosive dynamics occurs when the constraints on the elements of the matrix J°© do
not respect the condition on negativity of the trace.

The stability of the optimal steady state equilibrium depends on the assumption that habits
are transmitted both across and within generations, assumption that affects the sign of the
trace T§O and of element Z. Monotonic convergence to the optimal steady state equilibrium is
ensured only under the assumption that the stock of inherited habits does not persist into their
old age, i.e. only if § = 0 as in the standard Diamond [1965] model. Contrary to the competitive
equilibrium, the optimal solution is only characterized by a positive intragenerational spillover:
savings by the old, that directly finance the capital stock required for production in the next
period and indirectly sustain wages of the adult. The intergenerational spillover due to habits
is a priori internalized by the social planner in the maximization problem (18). As in the
competitive equilibrium, the process transforming the savings by the old into income for the
adult displays decreasing returns to scale, due to the characteristics of the production function.
However, the intergenerational bequest in terms of higher wages does not interact with any
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5 NUMERICAL EXAMPLE

other spillover. The intergenerational bequest in terms of higher wages will lead to a constant
increase in saving that induces a permanent expansion. The model might thus be characterized

by a diverging explosive dynamics.

5 Numerical example

Following Ferson and Constantinides [1991], we now assume that the utility function is log-
arithmic, In(cf — 6hy) + Bln(cf,; — dcf), and that the production function is Cobb-Douglas,
Yt = k‘?

The steady state relative to the competitive equilibrium (14)-(15) becomes

B (P +E)T-a
h = Q[a(®+:)+5]
in which

e 1+ B(1—6)
? = 2“‘““”%(1—@&(1—9)}
- _ 1] 1+p@1-90) o (1—a a(l —a)Bé(l —6)
== 2{04(1—04)6(1—9)}\/[ A (s ()

_ a(l-a)
€ = 14+ 8(1-10)

Appendix A.5 provides a detailed proof of the above closed form solutions.
We then use market clearing conditions (7) and (8), resource constraint (6) and individual
constraints (9) and (10) to derive steady state values of output, real wages, interest factor,

consumption of the adult and of the old, respectively:
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5 NUMERICAL EXAMPLE

—_—

y = (®+E5) T

w = (I1—a)(P+ E)_ﬁ

R = o(®+E)

¢ = (1—a)@+3) T (0 4) T

¢ = a(d+ E)fﬁ

We then assign values to the relevant parameters of the model, i.e. «, 38, # and d, and we

make comparisons with the standard Diamond [1965] model.
< Table 1 about here >

If agents assign the same value to 6 and §, steady state capital is systematically higher
than steady state capital in Diamond [1965]; steady state stock of habits is obviously higher
as steady state stock of habits is zero in Diamond [1965]; steady state adult consumption is
systematically lower than steady state adult consumption in Diamond [1965]; steady state old
consumption is systematically higher than steady state old consumption in Diamond [1965].
If agents assign to intensity of the intergenerational spillover a weight lower than the one
assigned to intensity of the intragenerational spillover, steady state capital is lower than steady
state capital in Diamond [1965] until § = 0, then it is higher; steady state stock of habits is
increasing until § = §, then decreasing; steady state old consumption is lower than steady state
old consumption in Diamond [1965] until # = §, then it is higher. The opposite is true if agents
assign to intensity of the intergenerational spillover a weight higher than the one assigned to

intensity of the intragenerational spillover.
< Table 2 about here >

Among all possible values of 6 and §, we are able to identify the values at which bifurcation
occurs, i.e. § = 0.87286299 and § = 0.12713701, given the assigned values of o = 0.3 and

B =0.9. At these specific values, det(JYF) is equal to 1, the trace T?E is positive and smaller
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5 NUMERICAL EXAMPLE

than 2 and the discriminant A of matrix J¢F

is negative. Therefore the eigenvalues of matrix
JCF are complex and conjugate and equal to (—0.82777345 & 0.561062494).

For = 0.87286299 and § = 0.12713701, the system is characterized by a spiral convergence
to the steady state equilibrium if mod ¢(0.87286299;0.12713701) < 1; it exhibits a period orbit
if mod ¢ (0.87286299;0.12713701) = 1 and a spiral divergence from the steady state equilibrium
if mod 0(0.87286299;0.12713701) > 1.

Analogously, the steady state relative to the optimal equilibrium (21)-(24) becomes

B(L+8)(1-9)

in which ¥ = =

+ 4. Appendix A.6 provides a detailed proof of the above closed form
solutions.

We then derive the steady state values of output, real wages and interest factor respectively:

We then assign values to the relevant parameters of the model, i.e. «, 3, 8, § and ~, and

we make comparisons with the standard Diamond [1965] model.
< Table 3 about here >

If agents assign the same value to # and § and the social planner’s discount factor v = 0.5,

steady state capital is generally higher than steady state capital in Diamond [1965]; steady
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5 NUMERICAL EXAMPLE

state adult consumption is generally lower than steady state adult consumption in Diamond
[1965]; steady state old consumption is generally higher than steady state old consumption in
Diamond [1965]. If agents assign to intensity of the intergenerational spillover a weight lower
than the one assigned to intensity of the intragenerational spillover, steady state capital is lower
than steady state capital in Diamond [1965] until # = §, then it is higher; steady state adult
consumption is higher than steady state adult consumption in Diamond [1965] until § = ¢,
then it is lower; steady state old consumption is lower than steady state old consumption in
Diamond [1965] until § = 4, then it is higher. The opposite is true if agents assign to intensity
of the intergenerational spillover a weight higher than the one assigned to intensity of the

intragenerational spillover.
< Table 4 about here >

When the social planner’s discount factor is very high, v = 0.99, steady state capital is
systematically higher than steady state capital in Diamond [1965]; steady state adult consump-
tion is systematically lower than steady state adult consumption in Diamond [1965]; steady
state old consumption is systematically higher than steady state old consumption in Diamond
[1965]. When v = 0.99, if 6 increases independently of J, steady state capital is systematically
increasing, steady state adult consumption is systematically decreasing and steady state old

consumption is systematically increasing. The opposite is true if § decreases.
< Table 5 about here >
< Table 6 about here >

When 0 = 0.87286299 and & = 0.12713701, given the assigned values of a = 0.3, = 0.9
and v = 0.5 or 0.99, det(J%°) is equal to 4 or 1.020304, the trace T§O is equal to 0.7272058
or 0.2863283 and the element Z is equal to 4.727206 or 2.30653, respectively. Therefore the
eigenvalues of the characteristic polynomial P associated to the Jacobian matrix J°© are
complex and conjugate and equal to (0.13362+1.06966:) and (0.22998+1.84102¢) when v = 0.5
and to (0.05376+0.77746¢) and (0.08941+1.293057) when v = 0.99. We can therefore conclude

that the dynamics of the social optimum is characterized by a locally unstable focus.
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6 CONCLUSIONS

6 Conclusions

This paper derives sufficient conditions for existence of a steady state equilibrium in an over-
lapping generations model with non-separable preferences and analyzes the implications of
non-separable preferences for the local stability of the steady state equilibrium.

It derives the conditions for existence and stability of the equilibrium in a competitive
setting and shows that the competitive economy may display either fluctuations or explosive
behavior. Then it studies the conditions for the existence and stability of optimal equilibrium
and it proves that the optimal solution may display damped oscillations or locally explosive
dynamics. This result depends on the assumption that habits are transmitted from one gen-
eration to the next one and from adulthood to old age.

This paper shows that combining different forms of non-separable preferences is not in-
nocuous: when we introduce persistence of individual tastes in the contest of an OLG model in
which habits are inherited, dynamics of the model and stability of the equilibrium are dramat-
ically affected. The results presented in this paper are therefore fundamental to understanding
the mechanisms underneath models with habit formation and habit persistence, as habits seem

to play a significant role in many aspects of economic theory.
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A APPENDICES

A Appendices
A.1 Proof of Proposition 1

First, linearize the non-linear dynamic system (14)-(15) around the steady state (k, h)

dkip1 = sw[—Fkfex) dke + sy fopdkipr + spdhy

dhepr = —kfiedke — so [~k frr] dke — sr frrdkirr — spdhy
Then solve the first equation by dk;11

1

dkiy1 = R [—swk frrdke + spdhy]

and substitute the solution into the second equation of the above system

1

dht+1 = m [(Sw -1 + Srfkk) kfkkdkt — Shdht]

The linearized system (14)-(15) around the steady state (k, h) is therefore

dki 1 1 —Swk fri Sh dky
dhigq 1= s fik (8w =1+ s, fur) Kfrr —sn dhy

in which

—swkfrk Sh

JOE_ 1—sr frk 1—sr frk
(sw—145r i)k fr —sp

1=sr frk 1—sr frk

is the Jacobian matrix evaluated at steady state (k, k). It is immediate to show that the matrix

I—JCF is equal to

kafkk o Sh
[I o JCE] _ 1+ 1—5p frr 1—5p frk
_ (sw=1+srfrr)kfur s
1—srfrr 1 + l_sffk:k:
and that its determinant is
E-PFRP N.15 19
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A.2 Proof of Proposition 2 A APPENDICES

wk wk: - —1 r k
det (I-JF) = 1+ Swk frk L Sh 8 Sk — (sw +82fkk) fkks _
L= sefin 1= srfur (1= srfrk)
_ 11— Srfkk + sp + (Sw + Sh) kfkk:
1 — s fre

under regularity conditions on the utility function and on the production function, given partial

derivatives of the saving function and equations (7) and (8).

A.2 Proof of Proposition 2

The determinant of the matrix J¢F is equal to

det (JF) = ShSwk frk sn (Sw — 1+ sy frk) K frk
(1 — s, frp)? (1 — s, frp)?

The trace is equal to

_ Swkfue s
1—spfir 1 —5rfun

TGV =

The discriminant is defined as

A = (T§F)? - 4det JOF

Therefore, under the following conditions

o (1_5rfkk)
sy = —0t
E fir
- 1
Sy —
frk
|sn] [ swk’fkk|:|
L i bl
1 — sy frk 1 — sy frk

it is immediate to prove that the determinant is equal to 1

snkf
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and that the trace becomes in absolute values smaller than 2

E | frrl £
T¢E = 2w <2 A2
J 1—spfor 1 —s0frk (#-2)
Since

T§F < 2= (T§F)® < 4 (A.3)

the discriminant is negative

A ka\fkk|_|_ |54

2
= —4<0 A4
1—spfoe 1 —s0frk (44)

A.3 Proof of Proposition 4

First, linearize the non linear dynamic system (21)-(24) around the steady state (25)-(28):

Ucacadc] + ueapdhy + Yucapdef | + yuppdhipr = ;vcocodcg + ;vcohdht — Veopde?yy — vppdhigy
1 1
g’l)coc()dcg + §Ucohdht - Ucoc"fk(kt—&—l)dcngl = Ucohfk(kt-i-l)dht—l—l + Ucofkk(kt+1)dkt+1
dhiy1 = def

dktJrl = fk(k‘t)dkt — dcf — dC?

Then solve the first equation by dcf,; and the second by dcy, ;, using the third and the

fourth equations:
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a
deiiq

(0]
dei

dhgyr

dkiiq

The linearized system (21)-(24) around the steady state (25)-(28) is therefore

dhiiq
degyy

dkgy1

Veoh 1

Veo frn(

kty1)

|: 'Ucoco
72uca h YUcah

Veop,

<7fk(/€t+1)

2
Ucoh

+ def +
Veoco fi (kt—i-l) > ] !

1
+[—+

Y VU Vueapveoco fi (ki)

Uhh  VUcoh

Jane+

[_ Ucaca  YUph
YUcah YUcap

Ueohp, Veop,

YUcap YUcah

-

Voo YUcah

|: Vco fkk(kt+1)
Veoco fk(kt+1)

<vcofkk(kt+1) n

Veoco fk(kt+1)
fkuct)] ks

Ucop

dh +

[Ucofkk(kt—i—l) N 1

Vcoco fk(kt—i-l)

v fre(key1)

]dcto—i-

’choc”fk(kt—&—l)

Ucofkk(kt+1)
- [Ucocofk(kt-i-l)

Ucoh
’Ucoco

vcofkk(kt+1)

Uc"c"fk(kt-i—l)

Jr (ke )dEy

(o]
| defiq |

in which

a
dcf

fr(ke)dky — def — def

0 1 0
[BA—E)-1] 4 B(D — E) DB
¥ ¥
0 -1 %
D
E D-F —-=

Ucaca + YUph + Vhh

0 ] _dht
C—B(1+D)| |dcf
—1 dk;
1+D | [d¢f

A =
YUcah
Vo
B = < 59
YUcap
o Veoco
C = — <0
Y Ucap,
Vo
p = v Jrk >0
’l)coco
Vo
= < -9
/I}Coco

>0

under the assumption that in steady state fi(kir1) = fr(ke) =71

As the Jacobian matrix evaluated at steady state (¢, %k, h) is

E-PFRP N.15
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0 1 0 0
BAE)N 4 _B(D-E) 2B ¢ - B(1+D)
-1 1 -1
¥
E D—-E -5 14+ D
it is immediate to show that the matrix I — J°? is equal to
1 -1 0 0
_BAB)ZY A4+ B(D—E) —2B _C+ B(1+ D)

I-— JSO = v R
1

0 1 - 1

—E -D+E B -1-D
and that its determinant is
1-B CFE
det(I-J%0) = 1—[A—B(D—E)++ '+ (1+D)+——0“E
Y
1-B CE

- —A+B(D—E)—71—D+;7

_ Uea ca + YUhh + Vhh _ l(l _ l)—i—
YUcah Y Y
4 Veoh Ve fi — Veohy _ Y0eo frk 40

YUcah Vcoco Veoco

under the assumptions that the utility function is concave, that the production function is

neoclassical, that equations (25)-(28) hold and that conditions (27) and (28) are met.

A.4 Proof of Proposition 5

The characteristic polynomial P in the eigenvalues o associated to the Jacobian matrix Jo¢

evaluated at steady state (c¢%, ¢, k,h) is
P(o) =o* —=T5%3 + Zo? — 4y 'T5% + det J°° =0

in which
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1-B+~CE _9
2 =7
Y

so  _ —1

T3 = 1+ " +A-BD-E)+Dz=20

det(J%9) = >0
if 1+ '+A+D=B(D-E)
Z = 2y'+(1+y'+A-B(D-E)+D)=0

if 1+3y'+A+D=B(D-E)

In order to study the polynomial P, factorize the polynomial P into

P(o)= (0 —o01)(0c —02)(c —03)(0c —04) =0

which is equivalent to

<02—¢10—|—1)<02—¢20—|—1> =0
Y 8

in which ¢1 = 01 + 02 and ¢9 = 03 + 04. Then analyze all possible scenarios, due to the sign’s
ambiguity of the trace T§O and of element Z.

First, assume that T?O and Z are both positive and analyze the two possible cases:
1. A= gb% — 4471 > 0,7 =1,2. The four eigenvalues are real and they can be:

(a) four negative roots. This case implies that ¢1 + ¢2 < 0 and ¢; - ¢2 > 0. This case

is excluded as it violates T§O > 0.

WO negative an WO pOsitive roots. 1S case 1mplies a 1 =+ 2 an
b) t gati dt iti ts. Thi implies that ¢ > 0 and

@1 - ¢p2 < 0. This case is excluded as it violates Z > 0.

(c) four positive roots. This case implies that ¢1 + ¢2 > 0 and ¢1 - ¢2 > 0. This case is

accepted as it respects both conditions on T§O and Z.

2. A=¢? —4y 1 <0,i=1,2. Look at the real parts only. Since the real part a = —%qﬁi #+

0,7 =1, 2, the eigenvalues are complex and conjugate and they can be:
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(a) four negative roots. This case implies that ¢1 + ¢2 < 0 and ¢; - ¢2 > 0. This case

is excluded as it violates T§O > 0.

(b) two negative and two positive roots. This case implies that ¢; + ¢2 = 0 and

@1 - 2 < 0. This case is excluded as it violates Z > 0.

(c) four positive roots. This case implies that ¢1 + ¢2 > 0 and ¢1 - ¢2 > 0. This case is

accepted as it respects both conditions on T§O and Z.

Under the assumption that T_*?O and Z are both positive, the only admissible case is (c). It
identifies an unstable node if the eigenvalues are real and an unstable focus if the eigenvalues
are complex and conjugate. Locally explosive dynamics is highly likely.

Then, assume that T§O and Z are both negative and analyze the two possible cases:
1. A=¢? — 4y 1 > 0,i =1,2. The four eigenvalues are real and they can be:

(a) four positive roots. This case implies that ¢1 + ¢2 > 0 and ¢1 - ¢2 > 0. This case is

excluded as it violates both conditions on T§O and Z.
(b) two negative and two positive roots. This case implies that ¢; + ¢2 = 0 and

@1 - 2 < 0. This case is admissible only if ¢1 + ¢ < 0 as T§O < 0.

(c) four negative roots. This case implies that ¢; + ¢2 < 0 and ¢ - ¢2 > 0. This case

is excluded as it violates condition on Z > 0.

2. A=¢? -4yt <0,i=1,2. Look at the real parts only. Since the real part a = —%qﬁi #*

0,7 = 1,2, the eigenvalues are complex and conjugate and they can be:

(a) four positive roots. This case implies that ¢1 + ¢2 > 0 and ¢ - ¢2 > 0. This case is

excluded as it violates both conditions on T§O and Z.

(b) two negative and two positive roots. This case implies that ¢; + ¢2 = 0 and

@1 - ¢ < 0. This case is admissible only if ¢ + @2 < 0 as T?O < 0.

(c) four negative roots. This case implies that ¢1 + ¢2 < 0 and ¢; - ¢2 > 0. This case

is excluded as it violates condition on Z > 0.
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Under the assumption that T§O and Z are both negative, the only admissible case is b), but
only if 1+ ¢2 < 0. It identifies a stable saddle point that ensures monotonic local convergence.

Finally, assume that Tgo and Z have opposite sign and distinguish two possible cases:
1. A= gb% — 4y~ 1 > 0,i =1,2. The four eigenvalues are real and they can be:

(a) four positive roots. This case implies that ¢1 + ¢2 > 0 and ¢ - ¢2 > 0. This case is

excluded as it violates both conditions on T§O and Z.

(b) two negative and two positive roots. This case implies that ¢; + ¢2 = 0 and

@1 - ¢ < 0. This case is admissible only if ¢1 + ¢2 > 0 as is ensures T§O > 0.

(c) four negative roots. This case implies that ¢1 + ¢2 < 0 and ¢; - ¢2 > 0. This case

is admissible only if T§Y < 0 and Z > 0.

2. A=¢? —4y 1 <0,i =1,2. Look at the real parts only. Since the real part a = —%qﬁi #*

0,7 =1, 2, the eigenvalues are complex and conjugate and they can be:

(a) four positive roots. This case implies that ¢1 + ¢2 > 0 and ¢1 - ¢2 > 0. This case is

excluded as it violates both conditions on T?O and Z.

(b) two negative and two positive roots. This case implies that ¢; + ¢2 = 0 and

@1 - ¢2 < 0. This case is admissible only if ¢1 + ¢o > 0 as it ensures T?O > 0.

(c) four negative roots. This case implies that ¢1 + ¢2 < 0 and ¢ - ¢2 > 0. This case

is admissible only if T?O < 0and Z > 0.

Under the assumption that the trace and the element Z have opposite sign, case (b) identifies
an unstable solution as T?O > (. Locally-explosive dynamics is highly likely. Case (c) identifies
a stable node for real eigenvalues and a stable focus for complex and conjugate eigenvalues,

and therefore it ensures damped convergence to the steady state.

A.5 Closed form solutions in the competitive equilibrium

If the utility function is logarithmic, In(cf —0h;) 4 1n(cf,; —dcf), and the production function

is Cobb-Douglas, y; = kf*, the competitive equilibrium (14)-(15) becomes
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B 0(1 — )k

koo : +5[(1 )k — Ohy] + (ke +8)(1+ 5)
a(l — Oc)kfa_l p

hiy1 =

T+ 18 1+

and the associated steady state (16)-(17) becomes

B e §5(1 — a)k®
b= 1+B[(1 a)k” — Ok + (ako=1 4+ 6)(1 + B)
B a(l —a)k?e—! n B o

(k=1 4+6)(14+58) 1+p
Derive h from the second equation of the above system and get

k2o¢—1
h=o —
@ ko1 +4

. . _ a(l-a)
in which o = IETeEE

Substitute h back into the steady state equation relative to k and get the following second

order equation in k*~!

Bla’8 — (1 — k2D + (1+ B)a — (1 — a)ak* " + (14 B)3 = 0

a(l-—a)

Since o = =0T

Bl — a(l —a)] = 5[%9 —a(l- a)]

B B[a(l—a)@—a(l—a)(l—i—ﬁ—ﬂ@)

a 1+ 8(1-0)
a(l—a)p
m[e—l—ﬁ-Fﬁa]

a(l—a)B(1+8)(1—6)
1+ B(1—0)

and the second order equation in k*~! becomes
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a(l—a)B(1+B)(1—6

J k201 | (14 B)ja— (1— )ik + (14 8)5 = 0

1+5(1-10)
a(l —a)B(1-0) 2(a—1) [a —(1—a)d] oy
— kA — k" 1 =0
1+ A1—0)]5 TS i
Setting a = —%, b= M, c=1and k%! = z, it is possible to rewrite the

above second order equation in k! as a quadratic equation of the type

ar’ +bx+c=0

Such equation has the following set of possible solutions

a—l a)d a—(1—a)d B(1-06
—bi\/b2—4ac — )]i\/{[ ]}2+4W

T1,2 = 2, _2a(1 a),B(l 0)
(1+B(1-0)]6

Since capital cannot be an imaginary number, the discriminant

[ — (1 — a)d] 404(1—04)6(1—0)

A=A 5 I TEEEO

must be non-negative. Since a, 3, J, (1 —6), (1 —«) and [1 4 (1 — 6)] are all positive, the
discriminant is strictly positive.

Now study the sign of the sequence {a, b, c}. By Descartes’ theorem, equation az?+bx+c =
0 has a positive and a negative solution, whatever the sign of the coefficient b is. Since physical
capital cannot be negative, the negative solution is excluded a priori. Therefore, the unique

solution for equation ax? + bx + ¢ = 0 is

M_i_\/{[a—(l a)5]}2+4a(1 )B(1—6)

B =N
T ga(1=a)B(1-0)
[1+5(1-6)]8
L e 1HB1-0) 1 1480-0) [ a(l—a)Bs( - 0)
=gl U=l T Z[a(l—a)ﬁ(l—ﬂ)]\/[ O N T T )

Using k®~! = z, the steady state value of k is
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= { -l TS g PR - (-a a(l-a)ps-0)|
_{2[ ' )5][04(1—a)ﬁ(l—9)]+2[0‘(1—a)6(1—9)]\/[ SN (RS (=) }

Therefore, the closed form solution of the steady state system (16)-(17) is

a(l —a)p(l —0)

1+ (1-0) ]

1

1| 1+p(1-9) Y (1o a(l—a)Bs(1—6)| " _ ol
2 a(l—a)ﬂ(l—e)]\/[ (1= apft+d [1+B(1—0)] } (®+5)

B a(l —a)
ho= [1+,6’(1—5)}

12«

1+8(1-6 1+8(1—6 a(l—a)Bs(1—0) | =@
{;[a —(1— Oé)(SHWﬁ(llg)] + %[W]\/[a —(1—a)i? + 4([1+5)(1_(9)})}

1+8(1—0 1+8(1-0 a(l—a)Bs(1-6
0‘{5[0‘ ~ (1~ )3 Bty + Hlan eyl — (1 — )2 +4([1+B)(1—(9)})} +6

_ Q[(<I>+E)112«3]
a(®+Z2)+0

X

in which

o 1+ B(1—0)
v = glo- (-l o
- _ 1] 1+pB(1-0) 0 (1—a a(l —a)Bo(1 —6)
= 2[a<1—a>5<1—9>}\/[ R ()
_ a(l—-aw)
© = T =g

A.6 Closed form solutions in the optimal equilibrium

If the utility function is logarithmic, In(cf —0hy)+ 5 1In(cf, | —dcf), and the production function

is Cobb-Douglas, y; = kf*, the optimal equilibrium (21)-(24) becomes
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S N Y NN
cf — Ohy iy — Ohiiq v g —dhy cfiq — Ohit1
1 B p —1
_ — e
- 00y — Ohypy
ht = C?fl
kiy1 = ki —cf —¢f

and the associated steady state (25)-(28) becomes

1 1 1 B 3
— 70 = = 0
c® — 6h 7 Ca_gp, 700—6h+ c® — 6h
1 B8 g 1
— — R
v —dh o —on"
h =
k¢ = k+c+¢°
Solve the first by ¢° and get
B(L+6)(1-06
¢ = G +9) )—|—5 =W

1—~6

in which

B +6)1-6)

U=
1—~6

Using the fact that in equilibrium ¢* = (1 —«)k® — k, substitute ¢* and ¢° into the resource

constraint and get

K =k+c"+c=(1—-a)(1+V)k*— Uk

which can be solved by k
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1

"= [m_\i)_a]—w

Now use k to find steady state values of ¢® = h and ¢°:
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Table 2: Determinant, trace and discriminant of matrix J¢F with o = 0.3 and 8 = 0.9

6 ) det(JCF) TF A
0.1 0.1 0.0301677 0.3879298  0.0298188
0.2 0.2 0.0597297  0.4713749 -0.0167243
0.3 0.3 0.0879759  0.5488476  -0.05067
0.4 0.4 0.1149739  0.621002  -0.0742521
0.5 0.5 0.1412331  0.6894475 -0.0895947
0.6 0.6 0.1674667 0.7560009 -0.0983293
0.7 0.7 0.1945311  0.822475 -0.1016595
0.8 0.8 0.2235291  0.8908297  -0.100539
0.9 0.9 0.2561193  0.9636522 -0.0958515
0.9 0.1 1.334589  1.986411  -1.392527
0.8 0.2 0.5575981  1.214424  -0.7555659
0.7 0.3 0.3146456  0.9491924 -0.3576161
0.6 0.4 0.2038696  0.7980331 -0.1786214
0.5 0.5 0.1412331  0.6894475 -0.0895947
0.4 0.6 0.0994906  0.6017719 -0.0358329
0.3 0.7 0.0681002 0.5259799  0.0042542
0.2 0.8 0.0424081  0.4575647  0.0397331
0.1 0.9 0.0201203  0.3940224  0.0747726
0.1 0.9 0.0201203  0.3940224  0.0747726
0.2 0.8 0.0424081  0.4575647  0.0397331
0.3 0.7 0.0681002 0.5259799  0.0042542
0.4 0.6 0.0994906 0.6017719 -0.0358329
0.5 0.5 0.1412331  0.6894475 -0.0895947
0.6 0.4 0.2038696  0.7980331 -0.1786214
0.7 0.3 0.3146456  0.9491924 -0.3576161
0.8 0.2 0.5575981  1.214424  -0.7555659
0.872863 0.127137 1 1.655547 -1.259164
0.9 0.1 1.334589  1.986411  -1.392527
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Table 5: Determinant, trace and discriminant of matrix J°¢ with a = 0.3, 6 = 0.9 and v = 0.5
0 ) det(J°9) T5° Z

0.1 0.1 1 17.04449  -13.04449
0.2 0.2 4 _7.140609  -3.140609
0.3 0.3 4 -3.905071  0.0949289
0.4 0.4 4 -2.337446  1.662553
0.5 0.5 4 -1.437521  2.562479
0.6 0.6 4 -0.8719509  3.128049
0.7 0.7 4 -0.4981759  3.501824
0.8 0.8 4 -0.2458125  3.754188
0.9 0.9 4 -0.0791088  3.920891
0.9 0.1 4 42.3286 46.3286
0.8 0.2 4 -0.112063  3.887937
0.7 0.3 4 -0.452936  3.547064
0.6 0.4 4 -0.8553743  3.144626
0.5 0.5 4 -1.437521  2.562479
0.4 0.6 4 -2.350999  1.649001
0.3 0.7 4 -3.93396  0.06604
0.2 0.8 4 719476 -3.19476
0.1 0.9 4 -17.1709  -13.1709
0.1 0.9 4 17.1709  -13.1709
0.2 0.8 4 719476 -3.19476
0.3 0.7 4 -3.93396  0.06604
0.4 0.6 4 -2.350999  1.649001
0.5 0.5 4 -1.437521  2.562479
0.6 0.4 4 -0.8553743  3.144626
0.7 0.3 4 -0.452936  3.547064
0.8 0.2 4 -0.112063  3.887937
0.872863 0.127137 4 0.7272058 4.727206
0.9 0.1 4 42.3286 46.3286
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Table 6: Determinant, trace and discriminant of matrix J°¢ with a = 0.3, 8 = 0.9 and

v =0.99

0 5 det(J50) T5° Z
0.1 0.1 1.020304  -8.109779  -6.089577
0.2 0.2 1.020304  -3.117836  -1.097634
0.3 0.3 1.020304  -1.520497  0.4997047
0.4 0.4 1.020304  -0.7757596  1.244442
0.5 0.5 1.020304  -0.372435  1.647767
0.6 0.6 1.020304  -0.1395867  1.880615
0.7 0.7 1.020304  -0.0038876  2.016314
0.8 0.8 1.020304  0.0712562  2.091458
0.9 0.9 1.020304  0.1058284  2.12603
0.9 0.1 1.020304  0.3303701  2.350572
0.8 0.2 1.020304  0.1934865  2.213689
0.7 0.3 1.020304  0.064989  2.085191
0.6 0.4 1.020304  -0.1083589  1.911843
0.5 0.5 1.020304  -0.372435  1.647767
0.4 0.6 1.020304  -0.8052661  1.214936
0.3 0.7 1.020304  -1.582303  0.4378991
0.2 0.8 1.020304  -3.225467  -1.205265
0.1 0.9 1.020304  -8.339892  -6.319691
0.1 0.9 1.020304  -8.339892  -6.319691
0.2 0.8 1.020304  -3.225467  -1.205265
0.3 0.7 1.020304  -1.582303  0.4378991
0.4 0.6 1.020304  -0.8052661  1.214936
0.5 0.5 1.020304  -0.372435  1.647767
0.6 0.4 1.020304  -0.1083589  1.911843
0.7 0.3 1.020304  0.064989  2.085191
0.8 0.2 1.020304  0.1934865  2.213689
0.872863 0.127137 1.020304 0.2863283 2.30653
0.9 0.1 1.020304  0.3303701  2.350572
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